21 research outputs found

    The Role of Premotor Areas in Dual Tasking in Healthy Controls and Persons With Multiple Sclerosis: An fNIRS Imaging Study

    Get PDF
    Persons with multiple sclerosis (pwMS) experience declines in physical and cognitive abilities and are challenged by dual-tasks. Dual-tasking causes a drop in performance, or what is known as dual-task cost (DTC). This study examined DTC of walking speed (WS) and cognitive performance (CP) in pwMS and healthy controls (HCs) and the effect of dual-tasking on cortical activation of bilateral premotor cortices (PMC) and bilateral supplementary motor area (SMA). Fourteen pwMS and 14 HCs performed three experimental tasks: (1) single cognitive task while standing (SingCog); (2) single walking task (SingWalk); and (3) dual-task (DualT) that included concurrent performance of the SingCog and SingWalk. Six trials were collected for each condition and included measures of cortical activation, WS and CP. WS of pwMS was significantly lower than HC, but neuropsychological (NP) measures were not significantly different. pwMS and HC groups had similar DTC of WS, while DTC of CP was only significant in the MS group; processing speed and visual memory predicted 55% of this DTC. DualT vs. SingWalk recruited more right-PMC activation only in HCs and was associated with better processing speed. DualT vs. SingCog recruited more right-PMC activation and bilateral-SMA activation in both HC and pwMS. Lower baseline WS and worse processing speed measures in pwMS predicted higher recruitment of right-SMA (rSMA) activation suggesting maladaptive recruitment. Lack of significant difference in NP measures between groups does not rule out the influence of cognitive factors on dual-tasking performance and cortical activations in pwMS, which might have a negative impact on quality of life

    The 2017 Terahertz Science and Technology Roadmap

    Get PDF
    Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies

    Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution

    No full text
    Phase-locked ultrashort pulses in the rich terahertz spectral range1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 have provided key insights into phenomena as diverse as quantum confinement7, first-order phase transitions8, 12, high-temperature superconductivity11 and carrier transport in nanomaterials1, 6, 13, 14, 15. Ultrabroadband electro-optic sampling of few-cycle field transients1 can even reveal novel dynamics that occur faster than a single oscillation cycle of light4, 8, 10. However, conventional terahertz spectroscopy is intrinsically restricted to ensemble measurements by the diffraction limit. As a result, it measures dielectric functions averaged over the size, structure, orientation and density of nanoparticles, nanocrystals or nanodomains. Here, we extend ultrabroadband time-resolved terahertz spectroscopy to the sub-nanoparticle scale (10 nm) by combining sub-cycle, field-resolved detection (10 fs) with scattering-type near-field scanning optical microscopy (s-NSOM)16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26. We trace the time-dependent dielectric function at the surface of a single photoexcited InAs nanowire in all three spatial dimensions and reveal the ultrafast (<50 fs) formation of a local carrier depletion layer

    Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures

    No full text
    The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement1, 2, 3, 4, 5 and tailored nanophotonics6, 7, 8. Graphene9, 10 and its heterostructures11, 12, 13, 14 have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus15, 16, 17, 18, 19 as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron–hole pairs by ultrashort near-infrared pulses. Here, we design a SiO2/black phosphorus/SiO2 heterostructure in which the surface phonon modes of the SiO2 layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO2, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron–hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∌50 fs and disappears within 5 ps, as the electron–hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices

    Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations

    No full text
    Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases
    corecore